229 research outputs found

    Robust motion control SMC point of view

    Get PDF
    In this paper the robust motion control systems in the sliding mode framework are discussed. Due to the fact that a motion control system with n d.o.f may be mathematically formulated in a unique way as a system composed of n second order systems, design of such a system may be formulated in a unique way as a requirement that the generalized coordinates must satisfy certain algebraic constraint. Such a formulation leads naturally to sliding mode framework to be applied. In this approach constraint manifolds are selected to coincide with desired constraints on the generalized coordinates. It has been shown that the CMC can be interpreted as a realization of the acceleration controller thus possessing all robust properties of the acceleration controller framework. The possibility to treat both unconstrained motion (the motion without contact with environment) and constrained motion in the same way is shown

    Motion control - A SMC approach

    Get PDF
    Motion control involves many diversified control problems of complex nonlinear systems. In this paper we will be addressing the SMC approach for multi-body mechanical systems control. The main feature of the SMC is constraint of the system motion into manifold in system state space. It will be shown that usage of the SMC methods is a natural way of addressing problems in motion control including constrained systems, redundant systems and functionally related systems to name some. The consistent application of the SMC methods leads to natural decomposition of system motion for redundant tasks and allows simple, straight forward dynamical decoupling of the multiple tasks

    Sliding modes in power electronics and motion control

    Get PDF
    In the paper the general approach to motion control systems in the sliding mode framework is discussed in details. It has been shown that, due to the fact that a motion control system with n d.o.f may be mathematically formulated in a unique way as a system composed on n 2 d.o.f systems, design of such a system may be formulated in a unique way as a requirement that the generalized coordinates must satisfy certain algebraic constrain. Such a formulation leads naturally to sliding mode methods to be applied where sliding mode manifolds are selected to coincide with desired constraints on the generalized coordinates. In addition to the above problem the design of full observer for IM based drive is discussed

    Discrete-time sliding mode control of high precision linear drive using frictional model

    Get PDF
    The paper deals with high precision motion control of linear drive system. The accuracy and behavior of the linear drive system are highly affected by the non-linear frictional component compromising of stiction, viscous and stribeck effect present in the system especially in the vicinity of zero velocity. In order to achieve the high accuracy and motion it is mandatory to drive our system with low velocity resulting in many non linear phenomena like tracking error, limit cycles and undesired stick-slip motion etc. This paper discuss the design and implementation of discrete time sliding mode control along with the implementation of dynamic frictional model in order to estimate and compensate the disturbance arising due to frictional component. Experimental results are presented to illustrate the effectiveness and achievable control performance of the proposed scheme

    Continuous time controller based on SMC and disturbance observer for piezoelectric actuators

    Get PDF
    Abstract – In this work, analog application for the Sliding Mode Control (SMC) to piezoelectric actuators (PEA) is presented. DSP application of the algorithm suffers from ADC and DAC conversions and mainly faces limitations in sampling time interval. Moreover piezoelectric actuators are known to have very large bandwidth close to the DSP operation frequency. Therefore, with the direct analog application, improvement of the performance and high frequency operation are expected. Design of an appropriate SMC together with a disturbance observer is suggested to have continuous control output and related experimental results for position tracking are presented with comparison of DSP and analog control application

    Control of interconnected mechanical systems

    Get PDF
    In this paper control systems design approach, based on siding mode methods, that allows maintain some functional relation – like bilateral or multilateral systems, establishment of virtual relation among mobile robots or control of haptic systems - is presented. It is shown that all basic motion control problems - trajectory tracking, force control, hybrid position/force control scheme and the impedance control for the interacting systems- can be treated in the same way while avoiding the structural change of the controller and guarantying stable behavior of the system In order to show applicability of the proposed techniques simulation and experimental results for high precision systems in microsystems assembly tasks are presented.

    Force feedback pushing scheme for micromanipulation applications

    Get PDF
    Pushing micro-objects using point contact provides more flexibility and less complexity compared to pick and place operation. Due to the fact that in micro-world surface forces are much more dominant than inertial forces and these forces are distributed unevenly, pushing through the center of mass of the micro-object may not yield a pure translational motion. In order to translate a micro-object, the line of pushing should pass through the center of friction. In this paper, a semi-autonomous scheme based on hybrid vision/force feedback procedure is proposed to push micro-objects with human assistance using a custom built tele-micromanipulation setup to achieve translational motion. In the semi-autonomous pushing process, velocity controlled pushing with force feedback is realized along x-axis by the human operator while y-axis orientation is undertaken automatically using visual feedback. This way the desired line of pushing for the micro-object is controlled to pass through the varying center of friction. Experimental results are shown to prove nano-Newton range force sensing, scaled bilateral teleoperation with force feedback and snapshot of pushing operation

    SMC based bilateral control

    Get PDF
    Design of a motion control system should take into account (a) unconstrained motion performed without interaction with environment or other system, and (b) constrained motion with system in contact with environment or another system or has certain functional interaction with another system. Control in both cases can be formulated in terms of maintaining desired system configuration what makes essentially the same structure for common tasks: trajectory tracking, interaction force control, compliance control etc. It will be shown that the same design approach can be used for systems that maintain some functional relation – like bilateral or multilateral systems, relation among mobile robots or control of haptic systems.

    Semi-autonomous scheme for pushing micro-objects

    Get PDF
    -In many microassembly applications, it is often desirable to position and orient polygonal micro-objects lying on a planar surface. Pushing micro-objects using point contact provides more flexibility and less complexity compared to pick and place operation. Due to the fact that in micro-world surface forces are much more dominant than inertial forces and these forces are distributed unevenly, pushing through the center of mass of the micro-object will not yield a pure translational motion. In order to translate a micro-object, the line of pushing should pass through the center of friction. In this paper, a semi-autonomous scheme based on hybrid vision/force feedback is proposed to push microobjects with human assistance using a custom built telemicromanipulation setup to achieve pure translational motion. The pushing operation is divided into two concurrent processes: In one process human operator who acts as an impedance controller alters the velocity of the pusher while in contact with the micro-object through scaled bilateral teleoperation with force feedback. In the other process, the desired line of pushing for the micro-object is determined continuously using visual feedback procedures so that it always passes through the varying center of friction. Experimental results are demonstrated to prove nanoNewton range force sensing, scaled bilateral teleoperation with force feedback and pushing microobjects

    Sliding-mode control of a flexure based mechanism using piezoelectric actuators

    Get PDF
    The position control of designed 3 PRR flexure based mechanism is examined in this paper. The aims of the work are to eliminate the parasitic motions of the stage, misalignments of the actuators, errors of manufacturing and hysteresis of the system by having a redundant mechanism with the implementation of a sliding mode control and a disturbance observe. x-y motion of the end-effector is measured by using a laser position sensor and the necessary references for the piezoelectric actuators are calculated using the pseudo inverse of the transformation matrix coming from the experimentally determined kinematics of the mechanism. The effect of the observer and closed loop control is presented by comparing the results with open loop control. The system is designed to be redundant to enhance the position control. In order to see the effects of the redundant system firstly the closed loop control for active 2 piezoelectric actuators experiments then for active 3 piezoelectric actuators experiments are presented. As a result, our redundant mechanism tracks the desired trajectory accurately and its workspace is bigger
    corecore